How to use the PL/SQL Debugger
In TOAD

By

Steve C. Chapman
TOAD Development Team
Quest Software, Inc.
Last Revised: Friday, July 16, 1999

the Tool for Oracle
Application Developers

This guide contains proprietary information, which is protected by
copyright. The information in this guide is subject to change without
notice and does not represent a commitment on the part of Quest
Software. The software described in this guide is furnished under a
license or nondisclosure agreement. This software may be used or
copied only in accordance with the terms of this agreement. No part of
this guide may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying and
recording, for any purpose other than the purchaser’s personal use
without the written permission of Quest Software, Inc.

1999 Quest Software, Inc. All Rights Reserved.
Quest is a trademark of Quest Software, Inc.
Quest Software, Inc.
610 Newport Center Drive, Suite 1400
Newport Beach, CA 92660
USA
Tel. (949) 720-1434 / Fax. (949) 720-0426
support@quest.com

www.guest.com

TOAD™ is a trademark of Quest Software, Inc. Other trademarks and registered trademarks used in this guide are the property of

QUEST
SOFTWARE

mailto:support@quests.com
www.quest.com

Table of Contents

WIVNAETS INBWW ..tttk bbbt e s e o2 e b e S H e b e b2 4R £ 2R e e E e ke e bt e b e e b £ e Rt e R e e ne e benbeeb e et e e neanee e eneas 1
INSEAITALION ...ttt bbbt bt e b e e bt bt e bt bt e bt e ae e st et e besbe b e et e e neene e e eas 2
07N D Y £ o] PO OO UR USRS 2
Quest SOftware ReGISIrAtioN KBYciviieieiee st sttt e et et sresne e e eneeseenrs 2
(@])Y/ 14T I T SRS 3
OLNEE BELA INOLES. ...ttt bbb bbb bbb bbb stk b ettt e et nb et eee 3
Minimum Oracle Database REQUIFEMENEScc.eieiirieiieieeeieie e see e se st e e sa et sresresresneereeneeneeseenes 3
(@] o T=To1 (I 0T @ Lo I I =T o] oSSR 4
(@] o TcTo1 (I 0T @F: o] To) A I =TT PSSP 4
Requirements t0 USE the DEDUGOETc..oviiiiiiiieei ettt et b ettt b e bbbt s e e b e 4
Starting and Stopping The DEDUGGET ..o bbb e 4
SEArtING the DEDUGGETeeieeieeee ettt bbbt bkt be e st e e et eaeeb e s be bt eb e e e aneeneenas 4
StOPPING the DEDUGGET ...ttt bt b et b e b e bt bt et e b sb e e b e s b e bt et e et eneennenas 5
Menus, Toolbars, WIndows, and GUI ..o bbbt e 5
THE DEIDUG IMBINU ...t et bbbt bbbt b e b e bt et et e nb e e b e s b e bt eb e e e e e e nnenas 5
The Debug TOOIDAr BULLONS........ccveiiieieiise et ettt sr et sre s e e s e e srestesreaneeneeneeneeneenees 6
The Dockable WINAOWS FEALUIE...........couiiiiieiiiirieiite ettt nb et 7
The Status Panel INQICALOIS.........ciiiiiirieiceriec bbbttt b ettt 8
DT o100 LT TS 9
Starting With or Without Argument ValUEScccviiiiiicieicese e 9
SEING AFGUMENT VAIUBS ...ttt bbbt b ettt et et b b et sb e et e e e e e e nnenas 9
EXeCute ProCeAUre OF FUNCLIONc..iiuiitiiiitiieeiie ettt ettt se bbbt st nee e 10
EXECULE PACKAGE ... e ettt bbbttt bbbt bt b et e e b e b e nbe bt e be e e e b e 11
EXECULE TrigQEr: INSERT .. .ottt ettt bbbt bttt se e b e nbe b e be e e et e 11
EXECULE TrigQer: UPDATE ettt ettt ettt bt b e be bt e e e e et e 12
ExXecute Trigger: DELETE ...ttt bbb bbbttt e e e b e 14
Viewing OUT ArguMENE VAlUEScccviiiicie ettt a et sresreane s nnenes 15
DOCKADIE WINGOWS ...ttt ettt ettt st s b ettt b et b ettt b et et s bt et st e b st 16
2T =T 1400 1] S 16
Setting or Adding BreakPOINtS.civiiiieieiiereseseseseseetesee st sre e sse s e aeseeseesrestesresneeseenseseeseenes 16
Editing @ BreakPOintcc.oiiiiiicieiese sttt ettt e ste s e e s et saentenreeneene e e e nenre s 16
Conditional BreaKPOINTSccvivivieeireieriisesese e e s e et e et e e steste e esaesae e e aesaestesaesresreeneeseenseeeneens 16
PaSS COUNE BIEAKPOINTSeiueiuieiiieite sttt sttt st b et b et s e esbenbesbe e b e sbeeneeneenenbesee s 17
Conditional, Pass Count BreaKPOINTS..........c.oiiiiiiiiaiiieie ettt ne e 18
Enabling or Disabling @ Breakpoint...........coooiiiiiii et 18
Deleting @ BreaKPOINTc..coiiiiieieie ettt e b e bbbt e e b e b bt b e et e b e 18
Breakpoints RIGt MOUSE IMEBNUcuiiiiiiiiie ettt ne e 18
LAY Lo 4SOV URO ORI 19
Ao [0 1T T AT L SR 19

o L Lo e TR o o PSSR 19
Enabling or Disabling @ WatChccvviiiiiiieccc et nne e 20

=] €T I AV Lo oSSR 20
WatChes RIGt MOUSE IMBNU........voieieiisiesie sttt e b sre s e e neeneesaenee e e 21

L0 1| IS - o OO SUUURURTUSOURTTRN 21
DBIMS OUEPUL ...ttt h e bt e bt bt et e a e e e b b e b £ ekt e st e e s b e sb e e eb e e nbeenbeembeeareearenbeanbeen 21
EVAIUALE/MOUITY ...ttt b bt bbbt bt et e bbb bt et e et e e e et e 22
KEYDOAIT SNOMTCULS.......eetiiee ittt b et e bbbt b e bt e b et e e nbesbeebeabe e st e e e nbenae s 23
GENEral DEDUY OPLIONS.cuiiuiiieitieiee ettt ettt b e bbbt bt e e et e e et e besbe bt e beeneeneenne b e 23
Preparing PL/SQL Code fOr PrOQUCTIONcouiitiiieiiie ettt et 25

What's New

(1). “Trace Out” toolbar button and corresponding Debug menu item has been added to execute to the end
of a called procedure back to the caller, to continue debugging the caller. <Shift>F8 is the shortcut
keystroke to invoke Trace Out from the keyboard.

(2). “Compile Dependencies with Debug Information” toolbar button and function has been added to

compile referenced procedures with debug information, so that when your procedure steps into another
called procedure, the debug information will be available. Note that the arrow in the icon points down
indicating the hierarchy, as opposed to the up arrow for the “Compile Dependencies” toolbar function.

Also, “Compile Used Objects” has been added to the procedure editor right click Debug submenu.

(3). Icon for the “Set Parameters” button changed from lightning bolt and plus sign to parentheses
containing ellipses.

(4). Icon for “Compile Dependencies” changed to include up arrow indicating that procedures that call your
procedure will be recompiled. This is needed because after you recompile your procedure, Oracle marks
all other procedures that call your procedure as INVALID, forcing you to recompile them.

(5). On the “TOAD Options” dialog, Debugging tab, there is a collection of radio option buttons for the
type of Compile Dependencies with debug information to choose from. As you start debugging a given
procedure, you can select how to compile procedures called by your procedure.

Compile Dependencies Option | Result

Yes Just before TOAD begins to debug your procedure, it automatically
compiles all procedures called by your procedure with debug
information.

No The debugger will not compile procedures called by your procedure.

Note that you will receive “[No Debug Information Available]”
messages if you step into other procedures while you are debugging.

Prompt Just before the debugging begins, you will be prompted whether or not
you want all procedures called by your procedure to be compiled with
debug information.

(6). “Program Reset” on the Debug menu changed to “Halt Execution”. Does the same thing.
(7). The init.ora parameter is BLANK_TRIMMING, not BLANK_TRIM.

(8). The minimum Oracle database version on Unix to support PL/SQL debugging is 7.3.4, not 7.3.3 as was
previously reported.

(9). “Output OUT Args” check box enabled on the “Execute Procedure” dialog. Section on “Viewing OUT
Argument Values” added to this document.

Installation

TOAD Version

You must have TOAD v6.2.7.12 or later. You can purchase the Commercial version of TOAD, download
an Evaluation version of TOAD, or update your existing TOAD installation by visiting this URL with your
web browser:

http://www.guest.com/toad/toad info.html

Note the new Debug menu between View and Tuning. As with all Windows menus with accelerator keys,
use <ALT>U to drop down the Debug menu.

-; Tool for Oracle Application Developers - [DEMO®0RASI/FUNCTION F_CALC BON_.. [W=] E3

/ File Edit Grd SO0LMindow Database Create Miew Debug Tuning Window Help _|5'|£|
LB CL[E e e EE B L

Note that the items on the Debug menu are only enabled while focus is on the “Stored Procedure
Edit/Compile” MDI child window.

Quest Software Registration Key

You must have a Quest Software registration key with the PL/SQL Debugger option activated in the key.
Once you have the key, start TOAD, go to the “Help|Register TOAD” menu to bring up the “Product
Authorization” window.

RIGGER FFF] M=l E3
uning window
Contents

Seanch fan HelE .
i tegister TOAD | =
% % % F, Sl Lab Server-zide [nstall

About...

Product Authorization Ed |

0]

Enter authorization key:

I Cancel

http://www.quest.com/toad/toad_info.html

In the “Product Authorization” window, enter the software registration key given to you by Quest Software,
in the “Enter authorization key:” text box. Click the <OK> button. Open a new “Stored Procedure
Edit/Compile” window. The items on the Debug menu should now become enabled.

The software registration key is a string of numbers and dashes that looks like this:

0-00000-00000-00000-00000

Copying Files
If you have a working installation of TOAD Commercial or Evaluation, then make a backup copy of your
TOAD.EXE file, and copy over it with the PL/SQL Debugger version of TOAD.EXE. There are no

additional files required for the PL/SQL Debugger. All of the code is contained within the TOAD.EXE
application file.

Other Beta Notes

This version also has a beta version of a true object browser to browse Oracle 8 objects. Thus, the window
name “Object Browser” has been changed to “Schema Browser” to avoid confusion. To open the Object
Browser, select “Object Browser” from the “Database” menu.

For example, a Pet-type object, PET_T, could be defined as a Pet tag number and a Pet name:

type pet _t as object (tag _no integer, nane varchar2(60))

Minimum Oracle Database Requirements

For all databases, you must have the Oracle Probe API installed in order to debug PL/SQL using TOAD.
Check for the existence of a package named DBMS_DEBUG in the SYS schema.

The debugger works on these database versions with the following caveats:

Database Version Notes

Oracle 7.3.4 on Unix, Oracle 7.3.4 on NT Inspect package variables by stepping into the
package first, then add the watch on the package
variable.

For the Call Stack to display, you must set the
BLANK_TRIMMING value to TRUE in the init.ora
Oracle Initialization parameters file and restart your
database. Otherwise, you will receive a load error
invoking the Call Stack window. Refer to your
Oracle documentation regarding the effects of the
BLANK_TRIMMING setting.

Oracle 8 (No notes or known issues. The PL/SQL Debugger
works just fine on Oracle 8 databases.)
Oracle 8l (No notes or known issues. The PL/SQL Debugger

works just fine on Oracle 81 databases.)

Objects You Can Debug

You can debug these kinds of Oracle objects:

(1). Top-level Functions
(2). Top-level Procedures
(3). Package Functions
(4). Package Procedures
(5). Triggers

Objects You Cannot Debug

You cannot debug these kinds of Oracle objects:

(1). Java classes
(2). Oracle 8 object methods

Requirements to use the Debugger

You must have the “Enable compiling multiple objects from a single file” option unchecked on the TOAD
Options dialog, Procedure Editor tab in order to use the debugger. You cannot debug a file containing
multiple PL/SQL objects. There has to be a one-to-one correspondence from the lines of source in the
editor to the lines of source in the database.

When you uncheck this option, the toolbar on the Stored Procedure Edit/Compile window will change.
Toolbar buttons 2 (execute FROM the cursor position), 3 (execute TO the cursor position), and 4 (run
current statement) will disappear. The multiple object dropdown list will disappear. Also, the 6 debug
buttons (Execute, Set Parameters, Step Over, Trace Into, Halt, and Add Watch) will appear on the right side
of the toolbar.

Starting and Stopping The Debugger

NOTE: The word “Procedure” refers to PL/SQL code including Procedures, Functions, Package
Procedures, Package Functions, or Triggers.

Starting the Debugger

Open up the “Stored Procedure Edit/Compile” window, from the “Database|Stored Procedure Edit” menu
item, or the “Open a new Procedure Edit Window” button on the main TOAD toolbar.

72

Load a PL/SQL procedure into the editor (either a file on disk or an existing object from the database),
compile the procedure via F9 or the “Compile” button on the Stored Procedure editor toolbar, then press F7
(Trace Into) to start stepping through the code. This will automatically generate the symbol table required
to obtain debug information for this procedure only.

If you intend to step into other procedures and view debug information in them, then you will need to click
the “Compile with Debug” toolbar button before beginning the debug process. Optionally, you can set

TOAD to always compile these procedures, never compile these procedures, or be prompted whether or not
to compile these procedures. See the “TOAD Options” dialog, “Debugging” tab.

Stopping the Debugger

To stop the debugger, select the Halt toolbar button, or the “Debug|Halt Execution” menu item. The status
panel will reset from “Running” to “Idle”.

When you have finished debugging your PL/SQL code, you need to compile it once again via F9 to discard
the symbol table.

Menus, Toolbars, Windows, and GUI

The Debug Menu

Ewecute curent source Shift+F3
Set parameters Chrl+F3
Bun [continue execution] F11
Bun ta Cursar F12
Step Ower Fa
Trace Into F?
Trace Qut Shift+F&

Halt Execution
Add Breakpaint at curzor F&

Evaluatetadify Chrl+alt+E
Breakpointz Chrl+&ilt+B
Call Stack, Chrl+ilt+5
Wwatches Ctrl-edult+had
DEMS Output Chrl+4t+D
Function Description
Execute current source Starts debugging and runs to the next breakpoint or end of procedure with the
current argument settings (set using “Set Parameters”).
Set Parameters Presents a dialog to set the IN argument values, and, in the case of a Package,

allows you to select which package procedure or package function to debug.

Run (continue execution) | Once you are stepping through the code, this function runs to the end of the
procedure or to the next breakpoint, whichever it encounters first.

Run to Cursor Once debugging has begun, runs to the cursor location as if it were a
breakpoint, and stops.

Step Over Executes one line of code at a time, bypassing a procedure or function call.

Trace Into Executes one line of code at a time, stepping into other procedures as they are

called. NOTE: only the top-level procedure will have debugging information
available for it. If you step into another procedure and want to view
debugging information, use the SQL Edit window and [alter procedure
proc_name compile debug]. Otherwise the message, “no debug information
available” will appear in the watch window.

Trace Out Executes to the bottom of the called procedure, returning to the caller to
continue debugging the caller.

Halt Execution

Stops stepping through the code, retaining watch and breakpoint settings.

Add Breakpoint at cursor

Adds or removes a breakpoint at the cursor location.

Evaluate/Modify

Brings up a window where you can, on the fly, inspect and/or change values
of variables and continue execution with the new values.

Breakpoints

Brings up a dockable window of the currently set breakpoints, allowing you
to add, edit, delete, enable or disable breakpoints.

Call Stack Brings up a dockable window of the current procedure or function call stack
(which procedures called which other procedures). This list is meaningful
only during execution, as indicated by the “Running” light in the status panel.
The Call Stack window is blank when you are at “Idle”.

Watches Brings up a dockable window of the current variables being watched,
allowing you to add, edit, delete, enable or disable watches.

DBMS Output Brings up a dockable window for displaying DBMS Output generated from

the procedure code. Note that the DBMS_OUTPUT content is not released
from the database (and therefore not displayed) until all procedures have
finished, or you force it to stop via the Halt button or Program Reset menu
item.

There is also a Debug menu in the Stored Procedure Edit/Compile window. Right click over the editor,
select “Debug” from the menu, and several Debug functions will appear on the submenu.

| pper [Ease

LawenEaze

Set Bookmark, r
Goto Bookmark:, k
Compile

Save File

Load File

rix Style save

[Laad Frocedure

Add watch at cursor
Set Breakpoint
[ireatle Breakmaint
Enatle Breakpaimt
Eemewe Breakparmt
Compile Uzed Objectz

423 il ==

Comment Block
IInCornment Block,
Format Statement
Blank Output Statement
kake Output Statement
Find Clozing Elock,

v Show Edit Toolbar
E diting Optionz

The Debug Toolbar Buttons

The Debug toolbar, contained on the right half of the “Stored Procedure Edit/Compile” toolbar, looks like

this:

F b Gy a" o

The functions are:

w0

Execute Procedure without setting parameters

Set Parameters

Step Over

Trace Into

Trace Out

Halt

Add Watch

Compile Dependent procedures with Debug Information

The Dockable Windows Feature

There are 4 stay-on-top windows for Breakpoints, Call Stack, Watches, and DBMS Output. Any of these 4
windows can be docked together into one window (or combinations of multiple docked windows) by

dragging the window title bar of one window and dropping it on another window. This will create a tabbed
interface to the separate panels.

Break Paintz
2 E] : pe——
Procedure I Line Commission. Dut NULL Call Stack,
F_CALC_COMMISSION 4

<] | i

DEBMS Cutput

Boruz_Out =1 “I
Bonus_Out=2

Bonus_Out =3

Bonuz_Out =4

Bonus_Out =5

Inzide CALC_CORMMISSION

4] il

into this:

Procedure | Line

F_CaLC_COMMISSION 4

DEMS Output

Bonus_Out=1 -
Bonuz_Out =2

Bonus_Out=3

Bonuz_Out =4

Bonus Out =4

Inzide CALC_COMMISSION

4] =W

or perhaps this:

Watches §

DEMS Output, Ca

Frocedure | Lire -
F_CALC_COMMISSION 4 DEMS Output @ Lall otz
F_CALC_COMMISSIOM[A)

1] | i

or combined all together into this:

Watchesl Ereal F'-:uintsl Call Stack iL

Borusz_Out =1
Bonus_Out=2
Borws_Out =3
Boruz_Out = 4
Bonus_Out=5
Inzide CALC_COMMISSION

B NS

There is an option in the TOAD Options dialog (see “View|Options™), on the “Debugging” tab, where you
can force the opening of all four debug windows when any of them are opened. Check on “Automatically
show all debugging windows when debugging”.

The Status Panel Indicators

While debugging PL/SQL code, the word “Running” will be displayed in a segment of the “Stored
Procedure Edit/Compile” window status panel at the bottom of the window, or “Idle” if you are not
currently debugging a procedure.

L | 2
10 1 |DEMO@ORAS! | | Ruriring |Statement compiled.
|Commit is ON | v

In order to finish running the debugger, click the “Continue execution to breakpoint” button in the toolbar,
or select “Run (continue execution)” from the Debug menu.

Debug Functions

Starting With or Without Argument Values

To start a debug session with or without any argument values, select menu item “Debug|Execute Current
Source”, or click the toolbar button:

¢

or press the shortcut keys, <SHIFT>F9. Debugging will begin, and it will stop on the breakpoints as
appropriate, or run to the end otherwise.

If your procedure contains any IN or IN/OUT argument values, and those argument values have not been
set yet (via the “Execute Procedure” dialog), these will be set to NULL.

FUNCTI ON F_CALC BONUS (Salary_In I N Nunber) RETURN NUVBER | S
Bonus_Qut NUMBER;
BEG N
/* Set Bonus earned equal to 10 percent of the enployee's salary. */
Bonus_Qut := Salary In * 0.10;
DBVMS_OUTPUT. PUT_LINE ('Bonus_Qut = '||to_char(Bonus_Qut));
Ret urn Bonus_CQut;
END F_CALC_BONUS;

In this case, “Salary_In” would be set to NULL. This would not be very useful for functions that depend
on the argument values, but is useful for checking branching logic, etc.

If you set any argument values in the “Execute Procedure” dialog (see below for details), then those values
and settings will be used.

In the case of debugging a package, you must select which package procedure or package function to start
debugging. This is selected in the “Execute Procedure” dialog. Once you have selected the package
procedure or function to execute, the “Execute” toolbar button will be enabled.

If you are debugging a trigger, then you have to go through the “Execute Procedure” dialog in order to set
up the anonymous PL/SQL block that will invoke the trigger.

Setting Argument Values

To set IN or IN/OUT argument values, select a Package Procedure to execute, or set up a trigger for
debugging, select menu item “Debug|Set Parameters”, or click the toolbar button:

i

or press the shortcut keys, <CTRL>F9. This does NOT execute the procedure or start debugging.

There are different uses for the “Execute Procedure” dialog depending on the type of PL/SQL object to
debug: Procedures, Functions, Package Procedures, Package Functions, or Triggers.

Execute Procedure or Function

You will be presented with this dialog to input values for the procedure or function arguments:

Execute Procedure |
Brocedure: Arguments [IMIMNADT]:
F_CALC_BONUS Name [Type [Walue |4
SalLAaRY_IM MNUMBER "O00 |-
LCode
1 DECLAERE
2 FetWal NUMEEE:
3
4 EBEGIN
5 RetVal := DEMO.F CALC BONUZ | 5000)
= END;
Hetuld/Eade Clipboard [T Dutput OUT args ok Cancel Help

Enter the desired values in the “Value” column, and click the <OK> button when ready to invoke the
procedure.

Notice how TOAD debugs the given PL/SQL procedure via an anonymous PL/SQL block. As you enter
values, the anonymous PL/SQL block code will be updated automatically.

You can also directly edit the anonymous PL/SQL code block. If you want to resynchronize the
anonymous PL/SQL block with the values entered in the grid, then click the <Rebuild Code> button. The

10

<Rebuild Code> button starts out disabled. If you make manual changes in the anonymous PL/SQL block,
then the button becomes enabled.

Execute Package

In the case of debugging packages, a list will be presented for you to select which package procedure or
package function to execute. Enter your values in the “Value” column, if desired.

Execute Package |
Brocedure: Arguments [IMIMNADT]:
MYFLINCHAME MName [Tupe [Walue |4
MYPROCNAME ML NUMBER, 2 [
JOBID WARCHAR2(200] TEST]
Code
1 BEGIN
2 DEMO,JINS . M¥PROCNAME ([2, 'TEIT'):
3 END:
BHetuid Eade Clipbaard [T Dutput DUT args ak. Caneel Help

Execute Trigger: INSERT

Debugging triggers are a little different then debugging procedures or functions. The values entered are for
the column values, not argument values. You must go through the “Execute Trigger” dialog to set up the
proper anonymous PL/SQL block to invoke the trigger, at which point the “Execute” toolbar button will
become enabled.

In the case of debugging an INSERT trigger, the values will be used as the values to insert. Note that the

inserted record will be rolled back so that no changes are made to the database during debugging. The
“INSERT INTO...” code is not valid until you enter the column values.

11

Execute Trigger Ed |

Trigger: Column Y alues: [~ WHERE clause values

MOMEY_TEST_TRIG Mame |T_I,I|:ue |"-"a|ue |;
I MNUMEBER 2 |-
MOMEY _WalLUE MNUMBER e |

Code

1 —— Modify this anonvmous bklock so that it will

2 —-— caduse the trigger to fire.

3 |BEGIN

4 INZERT INTC DEMO.MOWNEY TEST (ID, MONEY VALUE) WVALUES (Z, Z):

5 FOLLEACEK:

= END;

a | o

HebuidCode | | Clipboard ™ Dutput OUT args oK Cancel | Hep |

Execute Trigger: UPDATE

In the case of debugging an UPDATE trigger, you have to enter values for the “SET...” clause AND the
“WHERE...” clause. With the “Where Clause Values” check box unchecked, enter the “SET...” values.
With the “Where Clause Values” check box checked, enter the “WHERE...” values. Note that the updated
record will be rolled back so that no changes are made to the database during debugging. The “UPDATE
TABLE...” code is not valid until you enter the column values.

Entering the “SET...” values (“WHERE clause values” checkbox is unchecked):

12

Execute Trigger Ed |

Trigger: Column Y alues: [~ WHERE clause values

MOMEY _TEST_TRIG_UPD... M arne |Type |"v"alue |;
I MNUMEBER 1 |-
MOMEY_WaLUE HIIMBER e |

Code

1 —— Modify this anonvmous bklock so that it will

2 —-— caduse the trigger to fire.

3 |BEGIN

4 UPDATE DEMO.MONEY TE3T 3ET ID = 1, MoONEY VALUE = 2

5 WHERE ID = 3 and MONEY VALUE = 4;

E FOLLEACE:

7 END:

Rebuild Code Clipboard [~ Output OUT args ok Cancel Help

Entering the “WHERE...” values (“WHERE clause values” checkbox is checked):

13

Execute Trigger Ed |

Trigger: Column Y alues: v WHERE clause values

MOMEY _TEST_TRIG_UPD... M arne |Type |"v"alue |;
I MNUMEBER 3 |-
MOMEY_WaLUE HIIMBER 4

Code

1 —— Modify this anonvmous bklock so that it will

2 —-— caduse the trigger to fire.

3 |BEGIN

4 UPDATE DEMO.MONEY TE3T 3ET ID = 1, MoONEY VALUE = 2

5 WHERE ID = 3 and MONEY VALUE = 4;

E FOLLEACE:

7 END:

Rebuild Code Clipboard [~ Output OUT args ok Cancel Help

Execute Trigger: DELETE

In the case of debugging a DELETE trigger, you have to enter values for the “WHERE...” clause. With
the “Where Clause Values” check box checked, enter the “WHERE...” values. Note that the deleted
record will be rolled back so that no changes are made to the database during debugging. The “DELETE
FROM...” code is not valid until you enter the column values.

14

Execute Trigger Ed |

Trigger: Colurnn Y alues: v WHEFE clauze values

MOMEY_TEST_TRIG_DELE... = |Mame |Type |"Jalue |;
I MNUMEBER 1 |-
MOMEY _WalLUE MNUMBER 2

Code

1 —— Modify this anonvmous bklock so that it will

2 —-— caduse the trigger to fire.

3 |BEGIN

4 DELETE FEROM DEMO.MCNEY TEST WHERE ID = 1 and MOWNEY VALUE = 2;

5 FOLLEACEK:

= END;

a | »

HebuidCode | | Clipboard ™ Dutput OUT args oK Cancel | Hep |

NOTE: Once a value is entered into the Value column of the grid, in order to make it “NULL” again, type
in the word “NULL”. Otherwise, the value will be the empty string, *’.

NOTE: In the case of multiple BEFORE or AFTER actions, INSERT takes priority over UPDATE, and
UPDATE takes priority over DELETE.

Viewing OUT Argument Values

If you have OUT or IN OUT arguments in your procedure, you can elect to view their values during
debugging in the Debug DBMS Output window. To accomplish this, check the “Output OUT Args” check
box on the “Execute Procedure/Package/Trigger” dialog. TOAD will automatically add
DBMS_OUTPUT.Put_L.ine statements at the end of the anonymous PL/SQL block used to invoke your
procedure. Turn on the Debug DBMS Output window from the “Debug” menu, or press
<CTRL><ALT>D.

Procedure To Debug:

CREATE OR REPLACE PROCEDURE | N_OUT_ARG TEST
(in_arg I'N nunber,
out _arg ouT nunber,
in_out_arg IN OUT nunber) IS
t npVar NUVBER,
BEG N
tmpVar : = 0;

15

END | N_OUT_ARG TEST;
/

Resulting Anonymous PL/SQL Block to Invoke the Procedure:

DECLARE
OUT_ARG NUMBER;
I N OUT_ARG NUMBER;
BEG N
OQUT_ARG : = NULL;
IN QUT_ARG : = 2;

DEMO. | N OUT_ARG TEST (1, OUT_ARG |N OUT_ARG);

DBMS_OUTPUT. Put _Line(' OUT_ARG = ' || TO_CHAR(OUT_ARG)):
DBMS_OUTPUT. Put _Line(' IN_OUT_ARG = ' || TO_CHAR(IN_OUT_ARQ));
END;

Dockable Windows
Breakpoints

Setting or Adding Breakpoints

You can single click in the Procedure Editor gutter to set or reset a breakpoint, which will be indicated by a
“Stop” sign in the gutter. It is recommended that you set your gutter width to 35. See “Edit|Editor
Options” menu dialog to change the gutter width.

Also, pressing the F5 key will set or reset a breakpoint on the current line in the editor.

From within the Breakpoints window, you can also right click and select the “Add Breakpoint” menu item
to add a breakpoint, or press <CTRL>A.

Editing a Breakpoint

You can change an existing breakpoint by double-clicking the breakpoint in the Breakpoints window, or
single click to select it, click the right mouse button to present the menu, and select the “Edit Breakpoint”
menu item, or press <CTRL>E. This will bring up the “Breakpoint Properties” dialog.

Conditional Breakpoints

You can set breakpoints that ONLY break if a certain condition is met. Select a breakpoint in the
Breakpoints window, right click, Edit Breakpoint. Enter the condition for the breakpoint, e.g, “salary_in >
5000”. When running, the debugger will stop on the breakpoint ONLY if the condition is met.

16

Breakpoint Properties |

Procedure: F CALC BOWUS

Line rurnber: IE

Conditian: ISaIary_In = B000

Pass count: ID

[+ Enabled

0k, Cancel Help

The format for “Condition” is Variable Operator Value. The currently supported operators are:

<= Less then or equal to
<> Does not equal

>= Greater then or equal to
< Less then

> Greater then

= Equal

Pass Count Breakpoints

You can set breakpoints that break ONLY after a certain number of passes in a loop have occurred.

Breakpoint Properties |
Procedurs: |F_CALC_BONUS =l
Line rurnber: IE'

Conditior; I
Pass count: |3

[+ Enabled

Cancel Help

_____ Tool for Oracle Application Developers - [DEMO@0ORBASI QUEST.COM/FUNCTION DEMO.F___|

/ File Edt Gnd SOLA#indow Databaze Create Yiew Debug Tuning ‘wWindow Help
LB LB B B =

N N o A N PR e
LCEBBOYY v ¥, o o0 MBCae iE £ & ELOLEL

1 CRELATE OR REPLACE FUNCTION F CALC BONUZ (Salary In IN HNumber)

2 RETURN WNUMEEE IS

3 Bonus Out NUMEEER;

4 Test warcharz (30);

5 BEGIN

[F* Hat Bonpus eadrned egual to 10 percent of the emploves's =s3l:
7 Test := 'Thi=z iz a test'||chri(l0);

o FOR Counter War IN 1..5 LOOP

3 Bomus Out := Salary In ®o0.10;
10 DEM3 OUTPUT.PUT LINE { 'Bonus Cut = '|[]|to_char (counter wvar)):
11 END LOOP;

12

In this case, the debugger will NOT stop on line 9 of the code until just before “Bonus_Out := ...” executes

for the third time. The pass could be a FOR loop, DO WHILE loop, IF/END IF, etc. It is not dependent on
the COUNTER_VAR in this example.

Conditional, Pass Count Breakpoints

If both Condition and Pass Count are specified, the break will ONLY occur the nth time the condition is
met.

Enabling or Disabling a Breakpoint

Once a breakpoint is set, you can temporarily disable it by double-clicking the breakpoint and unchecking
the “Enabled” check box, or select the breakpoint, click the right mouse button, and select the “Disable
Breakpoint” menu item.

Disabled breakpoints will be grayed out in the Breakpoints window.
Deleting a Breakpoint

You can delete a breakpoint by selecting it in the Breakpoints window and pressing the <Delete> key, or
mouse right click and select “Delete Breakpoint” from the menu, or press <CTRL>D. Alternatively, you
can press F5 in the procedure editor on the line containing a breakpoint to toggle it.

Breakpoints Right Mouse Menu

From the Breakpoints window, there is a right mouse menu for working with breakpoints:

18

Edit Breakpaint. . Chil+E
Add Breakpaint. . Chrl+&,
Eratile Breakmaiat

Dizable Breakpoint

Delete Breakpoint Chrl+D
Wiew Source

Enable All Ereakpoints
Dizable &l Breakpoints
Delete All Breakpoints

v Stay on Top

v Dockable

Watches

Adding a Watch

You can double-click to select a variable in the editor, click the “Add Watch” button in the toolbar, and the
variable will be added to the list of watches.

Also, from the editor, you can click the right mouse button and select the “Debug|Add Watch at Cursor”
menu item to add a Watch.

Also, from the Watches window, you can click the right mouse button and select the “Add Watch” menu
item, or press <CTRL>A to add a watch.

NOTE: you cannot watch a trigger :new.column or :old.column value. The Oracle Probe API does not
support it.

NOTE: because of limitations in the Oracle Probe API, you cannot watch implicitly defined variables. For
example, this code is correct, but you cannot watch the Counter_Var variable as it loops. A workaround to
this would be to explicitly declare a local variable and copy the contents as it is changed, then add the
watch to the local variable.

CREATE OR REPLACE FUNCTI ON F CALC BONUS (Salary_In Number) RETURN
NUMBER | S
Bonus_Qut NUMBER,;
BEG N
/* Set Bonus earned equal to 10 percent of the enployee's salary. */
for counter_var in 1..5 | oop
Bonus_Qut := Salary In * 0.10;
end | oop;
Ret urn Bonus_CQut;
END F_CALC BONUS;
/

Editing a Watch

19

You can change an existing watch by double-clicking the watch in the Watches window, or single click to
select it, click the right mouse button to present the menu, and select the “Edit Watch” menu item, or press
<CTRL>E. This will bring up the “Watch Properties” dialog.

W atch Properties > |
E xpreszion: Im

[T Package ariable Cwrier: I

L L«

Package: I
Repeat Count; IU Digits; |18 ¥ Enabled
Fuormat
v Default i Shings\Hex " Elaating poirt
" StingsDec " Hegadecimal " Scientific

0k, Cancel Help

If the variable you want to watch is a package variable, check the “Package Variable” checkbox, and select
the owner and package name. Otherwise, a watch variable is assumed to be within the current scope of the
package procedure or package function.

In addition to the usual data types that you can watch, e.g., date, number, varchar2, you can also watch
array values and record types. If you have an array, e.g., MyArray(1..10), and set up a watch on
MyArray(1), then you could also set a “Repeat Count” setting of 3 to examine MyArray(1), MyArray(2),
and MyArray(3) all at the same time.

Digits is for the number of significant digits to be displayed.

If you prefer to see the watch value formatted differently then the default, then select from the format
options, e.g., floating point, scientific, etc. Non-printable characters (ASCII 0-31) embedded in strings can
often cause confusing errors and are hard to debug because most fonts are unable to render them in a
meaningful way. “String\Dec” will display non-printable characters, e.g., CR and LF, in decimal format,

e.g., “This is a test.\013\010” “String\Hex” will display those non-printable characters in hexadecimal
format, e.g., “This is a test.\$D\$A”.

Enabling or Disabling a Watch

Once a watch is set, you can temporarily disable it by double-clicking the watch and unchecking the
“Enabled” check box, or select the watch, click the right mouse button, and select the “Disable Watch”
menu item.

Disabled watches will be grayed out in the Watches window, and marked with “<disabled>".

You may want to disable some watches to improve the performance of the debugger. As each line of code
is executed, each watch has to be evaluated. The fewer the watches to evaluate, the faster it will run.

Deleting a Watch

You can delete a watch by selecting it in the Watches window and press the <Delete> key, or <CTRL>D.

20

Watches Right Mouse Menu

From the Watches window, there is a right mouse button menu for Watch specific commands:

Edit " atch... Chil+E
Addwatch... Chrl+&,
Eratleilateh
Dijzable ' atch
Delete wiatch Chrl+D

Enable Al atches
Dizable Al ' atches
Delete All ' atches

v Stay on Top

v Diockable

Call Stack

The Call Stack window displays the chain of functions and procedures as they are called. The most recent
functions or procedures are listed on the top, least recent on the bottom. At the end of each procedure name
is the current line number in that procedure. So, if procedure A called procedure B in line 5, then the call
stack would look like this: “Procedure B(1)” followed by “Procedure A(5)”.

You can navigate among multiple procedures via the Call Stack window either by double-clicking the

procedure name in the Call Stack window, or by selecting the procedure, click the right mouse button, and
select the “View Source” menu item.

Wiew Source

v Stay on Top

v Diockable

DBMS Output

The DBMS Output window displays the results of “DBMS_OUTPUT.PUT_LINE()” statements in the
editor. Note that output only comes out after the procedure has completed execution, not while you are
single stepping through the code. In the case of nested procedure calls, all procedures must have run to
completion before any DBMS Output content is displayed.

There is a right mouse button menu for DBMS Output specific commands:

21

v Enabled
Clear Output
Save tofile...
Frint
Set Buffer Size...

v Stay on Top

v Dockable

Buffer Size defaults to 20,000 bytes. The maximum size is 1,000,000 bytes.

You can edit the DBMS Output content, if you wish, to make comments, delete specific lines of output, etc.

Also, the standard copy, cut, and paste keys work in the DBMS Output text box.

Evaluate/Modify

The Evaluate/Modify window allows you to view the value of a variable on the fly, without having to set a

watch. Also, it permits you to change the value of a variable and continue execution. This is useful for
advancing a loop variable to the end of a “FOR COUNTER_VAR IN 1..500 LOOP” loop. In this case,
evaluate Counter_Var, and set its new value to 499. That will save you from having to step through the

loop the extra 498 times.

Evaluatetodify

[& &

Esprezsion:

Iu:u:uunter_var

[T Package Yarable Owner: IDEMD

L L) L

Package: IJIMS

Besulk:

1

||

[~
Mew Walue:

|4951 =l

Check the “Package Variable” checkbox if the variable to evaluate is a package level variable, and not a

local variable.

The “Evaluate/Modify” window is not dockable with the rest of the debug windows.

22

Keyboard Shortcuts

Here is a list of keyboard shortcuts for debugging purposes:

Keyboard Shortcut

Function

F5

Set or Delete a Breakpoint on the current line

F7 Trace Into

F8 Step Over

<Shift>F8 Trace Out

F9 Compile without Debug information
<Shift>F9 Execute Current Source

<CtrI>F9 Set Parameters

F10 Display mouse right-click popup menu
F11 Run (continue execution)

F12 Run to Cursor

<CtrI><Alt>B

Display Breakpoints

<CtrI><Alt>D

Display DBMS Output

<CtrI><Alt>E

Evaluate/Modify

<CtrI><Alt>S

Display Call Stack

<Ctrl><Alt>W

Display Watches

General Debug Options

In the “View|TOAD Options” dialog, “Debugging” tab, there are several settings you can select.

23

T.0.AD. Options]|

Colars:

E:I-:En:utiu:un point . - . . . ;?;thlt:lnl:c:;l:clt; Estaftﬂlineaifgzind
Dizabled breakpaint . . . I_

MEE

ma
¥ Allow watches on packages vanables

v dutomatically show all debugging windows when debugging
v Default debugging windows to StaydnT op [+ Enable Trace Output while debugging

[¥ Enable DBMS Dutput before every debugging session

¥ Compile dependent objects with debug infarmation

Debug zeszion timeout [in seconds] [10

Compile Dependencies
’71" ez Mo * Prompt

0k, Cancel

To set the colors of a breakpoint, current execution point, and any disabled breakpoints, select the
breakpoint type from the list at left. Then move the mouse pointer over the color selectors, click the left
mouse button to select a foreground color (e.g., the code text color), and the right mouse button to select a
background color. The letters “FG” will appear for Foreground color, and “BG” for Background color.

“Allow Watches on Package Variables” is provided because the Oracle Probe API call for watching
package variables acts differently on Oracle 7 and Oracle 8 databases. On Oracle 7 databases, you have to
step into the procedure BEFORE adding a watch on a package variable. On Oracle 8, you can set up the
watch on the package variable before or after stepping into the procedure. If you do not want to inspect
package variables, then uncheck this option.

“Automatically Show All Debugging Windows when Debugging” will bring up the docked window with
all of the four windows: Breakpoints, Watches, Call Stack, and DBMS Output if any of the four are
opened. With this option unchecked, then each window is activated separately, undocked.

“Default Debugging Windows to StayOnTop” will create the Breakpoints, Watches, Call Stack, or DBMS
Output window as a Stay-On-Top window when activated. Otherwise, they will be hidden underneath
TOAD when the Stored Procedure Editor window gets focus.

“Enable Trace Output while debugging” is for creating trace information while the debugger is running,
which will help debug the debugger interactions with the database. This is normally unchecked and is for
tech support or DBA use.

“Enable DBMS Output before every debugging session” will turn on DBMS Output before the debugging
begins to capture any output from DBMS_OUTPUT statements. Otherwise, the DBMS Output is turned on

24

ONLY when you open the DBMS Output window, and will not display any previously executed output
statements.

“Compile dependent objects with debug information” will cause debug symbol tables to be created for the
procedure you are debugging, and all procedures called by your procedure. This will eliminate the “[No
Debug Information]” messages when you step into other procedures.

“Debug session timeout (in seconds)” will limit the amount of time that the debugger will wait for the
database to respond with debug information.

“Compile Dependencies Yes/No/Prompt” will conditionally compile procedures called by your procedure
with debug information just before debugging begins.

These settings are saved in TOAD2.INI and restored the next time TOAD is invoked.

Preparing PL/SQL Code for Production

Once you have finished debugging your PL/SQL code, compile it one last time, which will recompile it
without the debug symbol tables. This will make it smaller and faster to run.

25

	W
	What’s New
	Installation
	TOAD Version
	Quest Software Registration Key
	Copying Files

	Other Beta Notes
	Minimum Oracle Database Requirements
	Objects You Can Debug
	Objects You Cannot Debug
	Requirements to use the Debugger
	Starting and Stopping The Debugger
	Starting the Debugger
	Stopping the Debugger

	Menus, Toolbars, Windows, and GUI
	The Debug Menu
	The Debug Toolbar Buttons
	The Dockable Windows Feature
	The Status Panel Indicators

	Debug Functions
	Starting With or Without Argument Values
	Setting Argument Values
	Execute Procedure or Function
	Execute Package
	Execute Trigger: INSERT
	Execute Trigger: UPDATE
	Execute Trigger: DELETE

	Viewing OUT Argument Values

	Dockable Windows
	Breakpoints
	Setting or Adding Breakpoints
	Editing a Breakpoint
	Conditional Breakpoints
	Pass Count Breakpoints
	Conditional, Pass Count Breakpoints
	Enabling or Disabling a Breakpoint
	Deleting a Breakpoint
	Breakpoints Right Mouse Menu

	Watches
	Adding a Watch
	Editing a Watch
	Enabling or Disabling a Watch
	Deleting a Watch
	Watches Right Mouse Menu

	Call Stack
	DBMS Output
	Evaluate/Modify

	Keyboard Shortcuts
	General Debug Options
	Preparing PL/SQL Code for Production

