Oracle9; Warehouse Builder by Example Series

Using the CASE Statement as a Transformation

The Scenario

In many cases an OLTP source system delivers
codes or numbered values to represent certain
states of the source data. In order to transform
this data into more legible values, a
transformation is needed.

Two cases are most frequently used in business
intelligence environments:

e Lookup to a list of values.
e A CASE statement to translate the values.

The lookup is typically used in cases where
many values need to be translated or where the
list is dynamic in itself.

The CASE statement is used in scenarios where
the list of values is relatively short or static,
which allows for incorporation of the values
within the statement itself.

The lookup would be implemented with the key
lookup operator. This example does not cover
this solution.

This example will cover three ways of applying a
CASE statement within Warehouse Builder.

Case study environment

The environment used in this example consists
of the following components:

e Oracle 9.0.1 database
e Warehouse Builder 9.0.33.3.0 or 9.0.3.35.0

The schema and data used in this example are
coming from the OE schema in the Oracle 9.0.1
database, more specifically the tables:

e Orders

The Orders table contains an order_status
column that holds numerical representations for
order status. When analyzing orders it is clearer
to your users if you translate the numerical
values in meaningful string values. A status of 0

does not mean a lot to the average user, but a
status of ‘Entered’ does.

Method 1 Using a Transformation

In order to use a function in Warehouse Builder
as a transformation, the code first needs to be
written and registered. In this case you create a
function that returns one row for each lookup.

In the example file we have defined a function
F_CASE with the following code:

& Code Editor: F_CASE

Coge [Edit Sesrch Test

1
2 v_output varcharz(:i):
3

4 mHIN

6 w_inpl
9 hen O them w_sutput :e
o hen | them w_sutpu e

] when I LRem w_output :
10 when O Lhem w_output :
1 when 4 Lhem w_output :
1z when 5 Lhem v_output @

13 whien Lhen v
14 when 7 then v_output i GED'
15 when § then u_output := 'RETURNED': -

[[1+

CULPUE @

Liret B Colurna §
Signature || Messages
FUMCTION F_CASE(|

V_INPL TH MUMEER)
FETURMN VARCHARZ

[inzan |

This function will transform the numerical
values in the ORDER_STATUS column of
OE.ORDERS into a more expressive string.

F] wWH_ORDERS

s

.
ORDERS

ORDER_ID
ORDER_MODE b, I
CUSTOMER_ID 78g =
ORDER_TOTAL 78g =
SALES_REP_IDT3g I
PROMOTION_ID7gg I
RESULT e b

viv v v|[v|[v[v

ig'—R—)

F_CASE

The transformation is used in the mapping
CASE_MAP_TRFM to transform and transport
data into the target table WH_ORDERS.

Method 2 Using an Expression

Oracle9; Warehouse Builder by Example Series

When using an expression in Warehouse Builder
you are essentially replicating the approach
chosen in the first method, with the difference
that you will add the entire case statement
explicitly into the SQL code.

+ Expreasion Builder Eupiesson tor HESULT

Inputz || Transform. Exprassion for RESULT *Be

TEY INGHFT 1 EEH TRGRPL.ORIER_STATUS

when 0
uhen
uhen
when 3 Lhem B 40
shen 1 then ' THTERRAL'

shen 5 then 'OH HOLD'

Nben S Lhen CHECERT .
1 | »
|Ling 1 Golumn 5 [inzert 1l [indaws: GRILF

23w

| = w=| =] w| = | or|anal

AN E RN —

Validation results:

= yaigass

Help) (o)

Cancel |

The mapping CASE MAP EXPR shows this
example.

==
ORDER_ID
ORDER_MODE *bc [
CUSTOMER_ID 72g [

Teg
ORDERS

SALES_REP_ID Tsg =
PROMOTIONJDF/SQ =

>

>

>

¥ ORDER_TOTAL T8¢ [
S

bd

> RESULT

[
CASE

g

_ =--=]

The draw back of this method is that the
expression cannot be reused since it is not stored
as a separate object in the repository.

Method 3 Using a View

The third method that can be applied is the usage
of a view. Using a view hides the transformation
logic from the user because it is not visible in the
mapping.

& View Properties: 5TG_ORDERS [Read/Write]

General Columng { Constraints Attribute Sets

Specify the guery text:

=select order_id =
, customer_id
, case order_status
when 0 then ENTERED"
when 1 then WVERIFIED"
when 2 then BOOKED'
wihen 3 then BILLED"
when 4 then INTERMNAL'
when & then 'ON HOLD'
when & then 'CHECKED' =
when 7 then DAMAGED"
when g then RETURMNED"
when @ then INVOICED'
wehen 10 then 'CANCELLED'

Help oK Cancel

The approach used in a view is exactly the same
as the approach used in method 2. In other words
the expression is handled in SQL and added to
the selection.

As an example take a look at the view
STG_ORDERS.

E] WH_ORDERS
l 1)
ORDER_ID 72k
ORDER_MODE % I-

£

STG_ORDERS

CUSTOMER_ID T2g B
ORDER_TOTAL '3g I
SALES_REP_ID 72g I
PROMOTION_ID 78g &=
RESULT o

I

viv v v [wv][w]wv

Using the view in a mapping will then eliminate
the usage of transformations in the mapping and
the load process would map one-to-one to the
target.

CASE vs. DECODE

Warehouse Builder generates various types of
code, some in row-based mode, some in set-
based mode. To guarantee that the code works in
all environments it is recommended to use CASE
instead-of DECODE. The CASE statement does
not work in row-based mode generation in an
OracleS8i database.

Another reason to use the CASE statement is that
it is faster than the DECODE statement, which
can be an important characteristic in an ETL
environment.

Oracle 8i vs. Oracle 9i

CASE is available in Oracle 81 however only in
the SQL context. This means that the CASE
statement poses the same problem in the Oracle
8i environment as the DECODE does.

Providing a PL/SQL wrapper (using a select
from dual to gather the data) around the
DECODE or the CASE statement solves this
issue.

The function F_ DECODE is created in
Warehouse Builder to achieve decode on the
Oracle 8.1.7 instance.

Oracle9; Warehouse Builder by Example Series

i Code Editor; F_DECODE =]
Coge Edit Sesrch Test

1

2 v_ourput varcharz(:i):

3

4 EEIN

& select decode
L)
L]
2
10
1
12
13
14
e

[Tne 1 Gatuene 1 [Windows: CRILF

Signature || Messages

FINCTTON F_DECODE |
V_INPL TH MUMEER)
FETURMN VARCHARZ

[inzan |

Then you apply the transformation in mapping
DECODE_MAP_ TRFM. The construct is valid
in all mapping code implementations and on
both the 8i and 97 environment.

ORDERS

> ORDER_ID Tggk
s ORDER_MODE b; I
> CUSTOMER_ID 785 I
s ORDER_TOTAL 79 I
> SALES_REP_ID T8g b
B PROMOTION_ID g I
> RESULT g =

£

F_DECODE

i

Conclusion

With its versatile user interface Warehouse
Builder lets you decide the implementation most
suitable for your environment.

If reuse is important creating a function is the
optimal solution, however if this is of no concern
than both other methods can be used. Using a
view makes the implementation less transparent,
especially when considering lineage and impact
analysis.

More Information

For more information please visit the following
sites.

General information about Oracle:

www.oracle.com

For more detailed information about Warehouse
Builder:

http://otn.oracle.com/products/warechouse/conten
t.html

Or join the Warehouse Builder forum on OTN:

http://www.oracle.com/forums/forum.jsp?id=116
4496

http://www.oracle.com/
http://otn.oracle.com/products/warehouse/content.html
http://otn.oracle.com/products/warehouse/content.html
http://www.oracle.com/forums/forum.jsp?id=1164496
http://www.oracle.com/forums/forum.jsp?id=1164496

	Using the CASE Statement as a Transformation
	The Scenario
	Case study environment
	Method 1 Using a Transformation
	Method 2 Using an Expression
	Method 3 Using a View
	CASE vs. DECODE
	Oracle 8i vs. Oracle 9i
	Conclusion
	More Information

